Given several variations of weights generated from a single
StudySpecification
, combine into a single weight.
Usage
# S4 method for class 'WeightedStudySpecification'
c(x, ..., warn_dichotomy_not_equal = FALSE)
Arguments
- x,
.. a
WeightedStudySpecification
object, typically created fromate()
orett()
- ...
any number of additional
WeightedStudySpecification
objects with equivalentStudySpecification
tox
and eachother- warn_dichotomy_not_equal
if
FALSE
(default),WeightedStudySpecification
s are considered equivalent even if theirdichotomy
differs. IfTRUE
, a warning is produced.
Details
Concatenating WeightedStudySpecification
objects with c()
requires both individual WeightedStudySpecification
objects to come
from the same StudySpecification
and have the same target (e.g all
created with ate()
or all created with ett()
, no mixing-and-matching).
All arguments to c()
must be WeightedStudySpecification
.
WeightedStudySpecification
objects may be concatenated together
even without having the same @dichotomy
slot. This procedure only
prompts a warning for differing dichotomies if the argument
warn_dichotomy_not_equal
is set to TRUE
.
Examples
data(simdata)
spec <- rct_spec(z ~ unit_of_assignment(uoa1, uoa2), data = simdata)
w1 <- ate(spec, data = simdata[1:30,])
w2 <- ate(spec, data = simdata[31:40,])
w3 <- ate(spec, data = simdata[41:50,])
c_w <- c(w1, w2, w3)
c(length(w1), length(w2), length(w3), length(c_w))
#> [1] 30 10 10 50
spec <- rct_spec(dose ~ unit_of_assignment(uoa1, uoa2), data = simdata)
w1 <- ate(spec, data = simdata[1:10, ], dichotomy = dose >= 300 ~ .)
w2 <- ate(spec, data = simdata[11:30, ], dichotomy = dose >= 200 ~ .)
w3 <- ate(spec, data = simdata[31:50, ], dichotomy = dose >= 100 ~ .)
c_w <- c(w1, w2, w3)