Given several variations of weights generated from a single
StudySpecification, combine into a single weight.
Usage
# S4 method for class 'WeightedStudySpecification'
c(x, ..., warn_dichotomy_not_equal = FALSE)Arguments
- x,
.. a
WeightedStudySpecificationobject, typically created fromate()orett()- ...
any number of additional
WeightedStudySpecificationobjects with equivalentStudySpecificationtoxand eachother- warn_dichotomy_not_equal
if
FALSE(default),WeightedStudySpecifications are considered equivalent even if theirdichotomydiffers. IfTRUE, a warning is produced.
Details
Concatenating WeightedStudySpecification objects with c()
requires both individual WeightedStudySpecification objects to come
from the same StudySpecification and have the same target (e.g all
created with ate() or all created with ett(), no mixing-and-matching).
All arguments to c() must be WeightedStudySpecification.
WeightedStudySpecification objects may be concatenated together
even without having the same @dichotomy slot. This procedure only
prompts a warning for differing dichotomies if the argument
warn_dichotomy_not_equal is set to TRUE.
Examples
data(simdata)
spec <- rct_spec(z ~ unit_of_assignment(uoa1, uoa2), data = simdata)
w1 <- ate(spec, data = simdata[1:30,])
w2 <- ate(spec, data = simdata[31:40,])
w3 <- ate(spec, data = simdata[41:50,])
c_w <- c(w1, w2, w3)
c(length(w1), length(w2), length(w3), length(c_w))
#> [1] 30 10 10 50
spec <- rct_spec(dose ~ unit_of_assignment(uoa1, uoa2), data = simdata)
w1 <- ate(spec, data = simdata[1:10, ], dichotomy = dose >= 300 ~ .)
w2 <- ate(spec, data = simdata[11:30, ], dichotomy = dose >= 200 ~ .)
w3 <- ate(spec, data = simdata[31:50, ], dichotomy = dose >= 100 ~ .)
c_w <- c(w1, w2, w3)
